From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations
نویسنده
چکیده
By revisiting the basic Godunov approach for linear system of hyperbolic Partial Differential Equations (PDEs) we show that it is hybridizable. As such, it is a natural recipe for us to constructively and systematically establish a unified HDG framework for a large class of PDEs including those of Friedrichs’ type. The unification is fourfold. First, it provides a single constructive procedure to devise HDG schemes for elliptic, parabolic and hyperbolic PDEs. Second, it reveals the nature of the trace unknowns as the Riemann solutions. Third, it provides a parameter-free HDG framework, and hence eliminating the “usual complaint” that HDG is a parameter-dependent method. Fourth, it allows us to construct the existing HDG methods in a natural manner. In particular, using the unified framework we can rediscover most of the existing HDG methods and furthermore discover new ones. We apply the proposed unified framework to three different PDEs: the convection-diffusionreaction equation, the Maxwell equation in both frequency and time domains, and the Stokes equation. The purpose is to present a step-by-step construction of various HDG methods, including the most economic ones with least trace unknowns, by exploiting the particular structure of the underlying PDEs. The well-posedness of the resulting HDG schemes, i.e. the existence and uniqueness of the HDG solutions, are proved. The well-posedness results are also extended and proved for abstract Friedrichs’ systems. We also discuss variants of the proposed unified framework and extend them to the popular Lax-Friedrichs flux and to nonlinear PDEs. Numerical results for transport equation, convection-diffusion equation, compressible Euler equation, and shallow water equation are presented to support the unification of the HDG methods.
منابع مشابه
Hybridized Discontinuous Galerkin Methods for Linearized Shallow Water Equations
We present a systematic and constructive methodology to devise various hybridized discontinuous Galerkin (HDG) methods for linearized shallow water equations. At the heart of our development is an upwind HDG framework obtained by hybridizing the upwind flux in the standard discontinuous Galerkin (DG) approach. The chief idea is to first break the uniqueness of the upwind flux across element bou...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملDiscontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and PML boundary conditions
In this paper, we will present a unified formulation of discontinuous Galerkin method (DGM) for Maxwell’s equations in linear dispersive and lossy materials of Debye type and in the artificial perfectly matched layer (PML) regions. An auxiliary differential equation (ADE) method is used to handle the frequency-dependent constitutive relations with the help of auxiliary polarization currents in ...
متن کاملMultisymplecticity of hybridizable discontinuous Galerkin methods
In this paper, we prove necessary and sufficient conditions for a hybridizable discontinuous Galerkin (HDG) method to satisfy a multisymplectic conservation law, when applied to a canonical Hamiltonian system of partial differential equations. We show that these conditions are satisfied by the “hybridized” versions of several of the most commonly-used finite element methods, including mixed, no...
متن کاملExploiting Batch Processing on Streaming Architectures to Solve 2D Elliptic Finite Element Problems: A Hybridized Discontinuous Galerkin (HDG) Case Study
Numerical methods for elliptic partial differential equations (PDEs) within both continuous (CG) and hybridized discontinuous Galerkin (HDG) frameworks share the same general structure: local (elemental) matrix generation followed by a global linear system assembly and solve. The lack of inter-element communication and easily parallelizable nature of the local matrix generation stage coupled wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 295 شماره
صفحات -
تاریخ انتشار 2015